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A model of an ion exosphere is set up and an expression is derived

ABSTRACT

for the variation of density with altitude. The ions are considered to be
under the control of superimposed gravitational and static, centered-dipole
magnetic fields and to have mirror points in the barosphere. Collisions are
ignored and the particles are assumed to be trapped in the dipole field.

By use of the first adiabatic invariant and Liouville's theorem, the
density is found to fall off faster with height in the exo-magnetosphere than
in either a neutral exosphere or an ionized barosphere. A justification of

the use of reduced effective gravity for the scale height of the ions is

given in the appendix. /4Z¢£ts<k1/




I NTRODUCT ION

The base of a true ion-exosphere, i.e. a region, in which ionic
mean free paths are of the same order of magnitude as the path length along
a line of force, will be much higﬁer than that of thé neutral exosphere,
since the Couloﬁb cross-section is much greater than the gas-kinetic
cross-section. Such an exosphere will have its base in a magnetospheric region
in which the ion density is of the order of a few hundred per cubic centimeter.
The cdmplete physical problem is one of immense complexity, even when the neutral

particles are ignored, involving, inter alia, various mechanisms of ion creation

and loss, interactions with gravitational, magnetic and, as yet unspecified
electric fields, diffusion processes of various types and even interplanetary
plasmaAand the solar wind.

In order to simplify the problem, we shall consider only the effects
of the superimposed gravitational and static, centered-dipole magnetic fields
upon ions, the mirrdr points of which are below an imaginary interface, the
baropause, separating the lower region, the barosphere, in which charged
.particles are in hydrostatic equilibrium from the upper region, the exosphere,
in which collisions can be ignored. There are no escape orbits, for we
assume that all of the charged particles are‘trapped by the magnetic field.
Therefore, we must take limiting exospheric case of no collisions whatsoever,
for even very rare collisons would, in the case of trapped particles, lead
eventually to the e;téblishment of hydrostatic equilibrium. Under this
assumptfon, there will be no particles with mirror points in the exosphere
itself.. We shall also assume that. at the baroﬁause, the velocity distribution
is Maxwellian, with a common temperature for both the ions and the electrons.
It is shown in the appendix that, from the existence of such a common temperature,
it follows that the effect of the electron s on the motion of the ions is to

reduce their gravitational acceleration by a factor of (1 + Z), where Z is




the degree of ionization.

The problem of computing the density distribution for the isolated
vngutral exosphere has been treated by Hpik and Singer (1959; 1961), who
derived an expression for the density distribution as a function of
éltitude. However, the analogous problem for an ionized exosphere
involves consideration of the effect of the magnetic field, as well a$
the gravitational field. Johnson (1959; 1960) has discussed the distri-
bution of protons in the region above 800 km, using a harometric neutral
distribution, mbdified by an inverse cube attenuation. In Johnson's
modé], the particles are envisaged as spreading apart as they go upward,
and crowding together as they go downward. In our model, this conduct
is characteristic only of those particles, whose speed is below a certain
critical value; the faster particles on the ohter hand, tend to exhibit
the opposite type of behavior, i.e. their pitch angles are crowded into
a steadily narrowing cone on the way up and spread out on the way down.

As a consequence, we derive a different altitude dependence of density.

MOTION OF AN ION

The scale of the'gravitatjonal field is large compared to the
radius of curvature of ion's trajectory in the ﬁagnetic field. Therefore,
one can apply Alfven's perturbation method and the guiding center approxi=-
mation, conserving the magnetic moment, or first invariant, defined as

follows,

M= m2 s indd /2B = const. (1)
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where m is the ion mass, v the magnitude of its velocity, @ its pitch
angle and B the magnitude of the magnetic field.

We also make use of the fact that a static magnetic field does no
work on a charged particle moviﬁg in, it, which enaBles us to write down,

immediately, the law of conservation of energy:

v,2 + V‘? = v, 0% + vlpz + 2r(1-R/r)/R (2)

Here, and in all the subsequent discussions, the subscript zero attached
to a quantity refers to the value of that quantity at the baropause. The

subscripts ,, and , refer to directions, parallel and perpendicular

respectively, re direction of the line of force, along
which the guiding center of the particle is moving, r is the geocentric
distance of the particle, R is the radius of the baropause and v is the
product of the gravitational constant and the mass of the earth. The
variations of the quantities are taken along the line of force. Since the
gravitational force is conservative, it can be integrated along the ling
of force to give the difference in gravitational potential between any
two points on the line of force.

Using equation (1), equation (2) can be written in the form:

Vu2 = V||02 = =2i (B'BO)/m - or(1 - R/r)/R' (3)

We now define dimensionless variables, in terms of which the remainder

of the calculations will be carried out.
Vo2 =2r/RU=y/v, ; y=R/r; 1= B/B.

In terms of these variables and the explicit form of pu, equation (3) now has the



form
unn? = u°2 (1 - 1 sin® Qb) = ((1-y) (L)
and the law of conservation of energy becomes:

u? = uo2 - (1 -y) (5)

The ratio of the magnetic fields in these units is given by:

1
= y? (U=3y,/y)%/(4-3y,) (6)

-

where Ye is the value of y at the geomagnetic equator. If R and Y, are

giveﬁ, the line of force is uniquely specified by means of its equation:
y = y /cos® A (7)

where A is the geomagnetic latitude. The parameter Ye differs from the
usual L in that it is measured in baropause radii instead of the usual
earth radii.

THE DISTRIBUTION OF IONS

For non-relativistic particles, Liouville's theorem,
D = dN/d® x d® p = const. (8)

tells us that the differential directional intensity, j, is proportional to
ua, and, having been isotropic at the base, it will remain isotropic every=-
where, in the sense that it remains uniform inside the allowed cone. The ratio

between the omnidirectional differential intensity J (y) and Jo-is given by:

LR =_(u/u°)3(n/no) (9)

where {1 is the solid angle subtended by the allowed cone.
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/e =fd9 /] d90=U[ d(cos a)/fd(cos @) (10)

A particle will reach a level y, if, and only if, it has sufficient
kinetic energy to overcome the gravitational forces, or in terms of the

parallel velocity, u,,(y) > O, or using equation (k):
' 2 2
uy 2 {(l - y)/ (1 = nsin ao)} (1)

The lowest possible initial velocity is that of a particle having

only parallel motion, ao = 0, giving:
1
min {u0}= (1 - y)2 (12)

Contributions to the intensity at y, for a given initial velocity,
will come only from a cone of aperture am’ where am is the initial pitch
angle corresponding to a pitch angle & = w72 at y. The cone of aperture.
am(uo, y) at the barosphere opens up into a complete hemisphere at y.

On the other hand, there exist particles which originally have no
parallel velocity (Gb = ﬁ/2), which nonetheless arive at y, having mirrored
up from the baropause, through the effect of the magnetic field. Such

particles must have initial velocities which satisfy the inequality:

w2 [0 =0 - | (13)
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At the baropause, these particles fill the entire hemisphere.
However, at y, their pitch angles have been reduced in accordance with
]

equation (1), and they are now crowded into a cone of aperture alny

given by means of equations (1) and (5), as:
. .
a'm(uo,y) = arc sin {:nuo‘/(uo2 = (1-y) i} = (14)

This crowding of the fast particles into a cone is in contradiction to the
picture visualized by Johnson (1959).

We must separate the ions into two classes, according to their
initial velocities, and associate a different solid angle ratio with

each élass:
Class A: (léy)é'< u < {KI'Y)/(I'ﬂi} :
Class B: {(l-y)/(l-fﬂ} £ < Uy <.

For class A, the solid angle ratio is unity, for, as mentianed
above, the allowed trajectories fill the entire hemisphere both at y = 1
and at any value of y. However, for class B, the solid angle at y < 1|
is reduced from the hemisphere sﬁbtended at the base. Using equation 10 ,

the solid angle ratios are:

@), (15)

1
/8y =1 = cos @' =1 = (0 20m) = (oy) )20y )}

where the explicit form of cos a'm has been obtained from equation (14).

The ratio of the differential densities is:




n/n, = (wu )= (wa) (16)

The total relative ion density, normalized to unity at the baropause,
is obtained by -integrating the above over the Maxwellian distribution pre-

vailing at the baropause.

1
l-y \2
($%)
Ny, v_) 3 © 2 ,ua® o du Q
e LE 3/ dug u -~ -— -
NI, y) " v / g o Caio) (ada exp (-bu®
v 2
(1-y)
-»
A 2
o (9% (&) (@), eXP('EUoz)l (17)
(l:x)é
1~
where the escape parameter at the baropause is:
E=mv2/2kT ' (18)

We insert the expressions for (%6) A, B from equation (15) and for u

and its derivative from equation (5), obtaining:

3/ . « 4 .
N( Y, Y. ) Lg 72 .
N(1, y: = {f duo uo (uo® - (l"Y))é exp (=-Eug®)

(1-y)2
- k/‘:uo uo (uoa (1-7) .‘(1.y>é exp (-Eug®) ' (19)
) . .
Loy
(ij.y,z)

Both integrals can be calculated in closed form, giving, after some

manipulation:
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N(y, v )/N(1, v,) = exp(-E(1-y) ) (l-(l--n)é exp(-En(l-y)/(l-n))) (20)

Using the explicit form of q given in equation (6), one may compute
vaiues of the relative density fn various ways. ln‘graph 1, the variations
in density of.hydrogen ions along a radius are presented for radii passing
through three different latitudes, assuming a temperature of 1500%K at
the baropause. In graph 2 the variation along the line of force crossing
the geomagnetic equator at 2 barosphere radii is given. Graphs 3, 4 and 5
show the zonaj variation of density for 1500° and 2000°.hydrogen at geo-
centric distances of 2, 5, and 10 barosphere radii. In all cases the
baroﬁause is at 1.1 earth radii.

| The density in an ion exosphere is reduced below that of a baro-
sphere by a factor which depends upon the variation of the magnetic field
upon the geomagnetic latitude and the height of the point in question.
It is of interest‘to note the comparison in graph 1 between our density
curves and that of Bpik and Singer from their 1959 paper (op. cit.). In
both cases the exosphere density lapse is greater than that of the corres-
ponding barometric distribution. However, at low and middle latitudes,
the decrease in scale height is greatest in the ionized exosphere, as
might be expected on purely intuitive grounds. Thé barometric proton
scale height without the magnetic field is twice that of neutral hydrogen
because of’the effective gravity reduction, while in the exomagnetosphere,
the lack of energy partition and the constraiqt of motion along magnetic
field lines function together to inhibit the upward motion of the ions.
The last effect diminishes with increasing latitude, as indicated by
graphs 3, 4, and 5, for as one goes poleward, the lines of force tend to

become more nearly vertical.
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APPENDIX

JUSTIFICATION OF THE USE OF REDUCED GRAVITY IN THE ION EXOSPHERE PROBLEM

Assuming that the ions and electrons have a common temperature, gross
quasineutrality of the plasma can only be maintained if the following approx-

imate relation holds
My 9e ~ ™ 9; ' (1)

where the subscripts e and i refer to the electrons and ions respectively,
mis méss and g the effective gravitational acceleration. As is well known,
equation (1) leads to the conclusion that there must be an electric field
which reduces the effective gravity of the ion below the normal gravitational
acceleration be a factor of (1 + 2), where £ is the degree of ionization.

It will now be shown that if the deviation from charge neutrality
exceeds a fraction of a percent of the total number density, the electro-
static energy generated will exceed the thermal energy of the plasma.

Assume that above a certain level R, there is a space charge caused
by deviations of the plasma from neutrality; these deviations are a result

of scale height inequality.

H. < H
' € (2)

The electrostatic potential created by this charge density will be:

p () "f le=e*]™ ¢'2 aro p(rryan
- (3)

We shall assume the following form for the functionp (r)
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Py exp(=(r-R)/H) r>R

o(r) = ’ (L)

0 r<R®R

P, = €ON, where € is the electronic éharge and AN the deviation from
neutrality.

This is a two-dimensional problem. We integrate over all space’
outside a large sphere of radius R and find the potential drop over
one scale height H << R. The function in (3) can be expanded in the

.

usual Legendre polynominals.

r-l‘Z(r'/rfT Pn(cos 8); r* < r
LS

I+

1

I~

-

[}
_~~
un
p -

=(r/r)™! Pn(cos 8); r' > r

r
p(r) = 2"p° {:/‘d(cos @)L Pn(cos ©) [r-("+2ilﬁ dript™2 exp(~(r*-R)/H)

| (6)
+ r?/\ dr'r'"+' exp(-(r'-R)/H)]
r

Integrating over r' and cos® and using the orthonormality of the
Legendre polynomials, we obtain, after defining:

X = (r-R)/H

-1 2 ==X 2 -X 3 =X =X

B(r) = bwp_ r * [H(R®-r%e™™) + 2H*(R-re ™) + 2H3(1-e ") ]+H(lt+r)e (7)

Now consider a volume consisting of a column of unit cross section
and height H << R and r, and apply the condition that the electrostatic
energy stored in the layer between R and R+H be no greater than the thermal
energy of the plasma of number density N, contained in the column. This
will give us an upper bound for Aﬂ/h. Under the approximation (R/H)Z

>> (R/H) >> 1, we have:
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_ - . 2 42
Eelec. = e(@(R+H)- B(R)) = - Lwe=ANH (8)
Ethe.rmal = NHkT > IEelec.-I i 9
giving:

ON/N < kT/lme2H 10
For H = 100 km and T = 1500° K, we have

ON/N< T.1 x 102 1

For the same temperature and a hydrogen ion density of 5.10% cm 3

typical of a geocentric distance of 1.4 earth radii (Singer and Lenchek,
1962), the Debye length may be estimated. Taking the limiting case of

equality in equation (11), we find for the Debye length

1
h = 6,90 (T/ON)2 = 120 cm.

i.e. the Debye length, which is the distance over which the plasma can
deviate appreciably from neutrality is of the order of a meter, considerably
smaller than the scale height or any of the other characteristic dimensions
involved in the problem.

Equation (11) is, at best, an order of magnitude estimation, for it
is doubtful that the electrons obey such a barometric density lapse law
in thevexosphere. However, it is clear that even if the density lapse is
steeper than the barometric lapse, the conditions on the relative deviation
will become more stringent and our point is even more strongly established.
The assumption that the deviation obeys the electrons! distribution law

merely strengthens our conclusion, for the ion scale height, if assumed
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to be much smaller than that of the electrons, will affect the result only
slightly. . What we have shown is, in fact, that the ion and electron
scale heights must be very close to equality, for if not, electric fields
will develop which will tend to restore the gross neutrality of the plasma.
It is precisely such a field which determines the effective gravity of
the ions. It should be nofed that this result does not require that any
particles escépe, and, therefore, the presence or absence of a static
magnetic field which traps the particles, but does no work upon them,
does‘not affect the result in any way.
Acknowledgments: Thanks are due to Mr. M. Liwshitz for many fruitful
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